Математика для заочников и не только

Высшая математика – просто и доступно!

Вы находитесь на зеркале сайта mathprofi.ru

Наш форум, библиотека и блог: mathprofi.com

Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Производная комплексной
функции. Примеры решений

Как найти функцию
комплексной переменной?

Конформное отображение
Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом


  Карта сайта


Как решить систему дифференциальных уравнений
операционным методом?


На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализанахождение частного решения системы дифференциальных уравнений методом операционного исчисления. Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку Как решить ДУ операционным методом. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений, что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения. Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной  – с «довесками» в виде функций  и  в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении.
2) В скобочках начальных условий  находятся строго нули, и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом. Из справочных материалов потребуется та же таблица оригиналов и изображений.

Пример 1

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений,  соответствующее  заданным начальным условиям.
, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ  данный переход обычно прост:

Используя табличные формулы № 1, 2,  учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки».  Используя те же преобразования № 1, 2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует  или . В правые части уравнений следует «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить ,  а на вторых позициях :

Полученную систему уравнений с двумя неизвестными  обычно решают по формулам Крамера. Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:
, значит, система имеет единственное решение.

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы:

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом. Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов, с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:

В результате операторное решение системы:

Чайникам советую записывать разложенное операторное решение в следующем виде:
 – так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:  

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений,  соответствующее  заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений,  соответствующее  заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом. Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Систему решим по формулам Крамера.

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:


Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:  

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений  с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен  не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:  

Один из немногих случаев, когда я согласен с тем, что метод операционного исчисления действительно проще, чем «обычный» способ решения.

Заключительный, более трудный пример – для самостоятельного изучения:

Пример 5

Методом операционного исчисления найти частное решение системы дифференциальных уравнений  с заданными начальными условиями ,

В данной задаче может возникнуть трудность у финишной ленты – при переходе от изображений к оригиналам. Смотрите концовку Примера 7 статьи Как решить ДУ операционным методом, там подробно закомментировано, что нужно сделать в аналогичной ситуации. Полное решение и ответ уже рядом.

Желающие потренироваться дополнительно, могут решить операционным методом примеры № 1-4 урока Как решить систему дифференциальных уравнений, тем более, там известны правильные ответы. Ну а я отойду заварить еще кофе, перед тем как сверстать эту веб страницу. Действительно усталость накопилась…

Успешной сдачи зачётов и экзаменов!

Решения и ответы:

Пример 2: Решение: С помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходное уравнение:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.
Примечание: многочлен  раскладывается на множители устно, на черновике или прямо в тексте работы. В общем случае требуется решить квадратное уравнение .

Таким образом, операторное решение системы:

Методом неопределенных коэффициентов получим суммы элементарных дробей:

В результате:

Прейдем от изображений к соответствующим оригиналам:

Ответ: частное решение:

Пример 5: Решение: С помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Таким образом, операторное решение системы:

Методом неопределенных коэффициентов получим сумму элементарных дробей:

В результате:

Перейдем от изображений к соответствующим оригиналам:

Частное решение:
Ответ:  

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


© Copyright  Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте