Высшая математика – просто и доступно! Вы находитесь на зеркале сайта mathprofi.ru Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Как вычислить площадь поверхности вращения?Рад приветствовать вас на «окраине» темы, где мы разберём ещё одно, более редкое приложение определённого интеграла – нахождение площади поверхности вращения. Предполагаю, что здесь собрались люди, знающие толк в интегралах, поэтому сразу перейду к основным понятиям и практическим примерам. Посмотрим на лаконичную картинку В первую очередь, конечно, площадь криволинейной трапеции. Знакомо со школьных времён. Если же данная фигура вращается вокруг координатной оси, то речь уже идёт о нахождении объёма тела вращения. Тоже просто. Что ещё? Не так давно была рассмотрена задача о длине дуги кривой . И сегодня мы научимся рассчитывать ещё одну характеристику – ещё одну площадь. Представьте, что линия вращается вокруг оси . В результате этого действия получается геометрическая фигура, называемая поверхностью вращения. В данном случае она напоминает такой горшок без дна. И без крышки. Как бы сказал ослик Иа-Иа, душераздирающее зрелище =) Чтобы исключить двусмысленную трактовку, сделаю занудное, но важное уточнение: с геометрической точки зрения наш «горшок» имеет бесконечно тонкую стенку и две поверхности с одинаковыми площадями – внешнюю и внутреннюю. Так вот, все дальнейшие выкладки подразумевают площадь только внешней поверхности. В прямоугольной системе координат площадь поверхности вращения рассчитывается по формуле: или, если компактнее: . К функции и её производной предъявляются те же требования, что и при нахождении длины дуги кривой, но, кроме того, кривая должна располагаться выше оси . Это существенно! Нетрудно понять, что если линия располагается под осью , то подынтегральная функция будет отрицательной: , и поэтому к формуле придётся добавить знак «минус» дабы сохранить геометрический смысл задачи. Рассмотрим незаслуженно обойденную вниманием фигуру: Площадь поверхности тораВ двух словах, тор – это бублик. Хрестоматийный пример, рассматриваемый практически во всех учебниках по матану, посвящён нахождению объёма тора, и поэтому в целях разнообразия я разберу более редкую задачу о площади его поверхности. Сначала с конкретными числовыми значениями: Пример 1 Вычислить площадь поверхности тора, полученного вращением окружности вокруг оси . Решение: как вы знаете, уравнение задаёт окружность единичного радиуса с центром в точке . При этом легко получить две функции: Суть кристально прозрачна: окружность вращается вокруг оси абсцисс и образует поверхность бублика. Единственное, здесь во избежание грубых оговорок следует проявить аккуратность в терминологии: если вращать круг, ограниченный окружностью , то получится геометрическое тело, то есть сам бублик. И сейчас разговор о площади его поверхности, которую, очевидно, нужно рассчитать как сумму площадей: 1) Найдём площадь поверхности, которая получается вращением «синей» дуги вокруг оси абсцисс. Используем формулу . Как я уже неоднократно советовал, действия удобнее проводить поэтапно: Берём функцию и находим её производную: Далее максимально упрощаем корень: И, наконец, заряжаем результат в формулу: Заметьте, что в данном случае оказалось рациональнее удвоить интеграл от чётной функции по ходу решения, нежели предварительно рассуждать о симметрии фигуры относительно оси ординат. 2) Найдём площадь поверхности, которая получается вращением «красной» дуги вокруг оси абсцисс. Все действия будут отличаться фактически только одним знаком. Оформлю решение в другом стиле, который, само собой, тоже имеет право на жизнь: Ответ: Задачу можно было решить в общем виде – вычислить площадь поверхности тора, полученного вращением окружности вокруг оси абсцисс, и получить ответ . Однако для наглядности и бОльшей простоты я провёл решение на конкретных числах. Если вам необходимо рассчитать объём самого бублика, пожалуйста, обратитесь к учебнику, в качестве экспресс-справки: Что только мы не делали с параболой за годы обучения, поэтому было бы большим упущением не покрутить её в своё удовольствие: Пример 2 Вычислить площадь поверхности тела, полученного вращением параболы вокруг оси на промежутке . Здесь нужно рассмотреть верхнюю ветвь и действовать по стандартному алгоритму. Сама поверхность вращения, как многие представили, напоминает «кружку с яйцевидным дном», что кармически намного лучше дырявого горшка =) Краткое решение и ответ в конце урока. Чертёж в рассматриваемом типе задач не обязателен (кроме затейливых примеров), но всегда полезно хотя бы иметь представление о поверхности вращения. Площадь поверхности вращения при параметрически заданной линииЕсли кривая задана параметрическими уравнениями , то площадь поверхности, полученной вращением данной кривой вокруг оси , рассчитывается по формуле . При этом «направление прорисовки» линии, о которое было сломано столько копий в статье Площадь и объем, если линия задана параметрически, безразлично. Но, как и в предыдущем пункте, важно чтобы кривая располагалась выше оси абсцисс – в противном случае функция , «отвечающая за игреки», будет принимать отрицательные значения и перед интегралом придётся поставить знак «минус». Пример 3 Вычислить площадь сферы, полученной вращением окружности вокруг оси . Решение: из материалов статьи о площади и объемё при параметрически заданной линии вы знаете, что уравнения задают окружность с центром в начале координат радиуса 3. Ну а сфера, для тех, кто забыл, – это поверхность шара (или шаровая поверхность). Придерживаемся наработанной схемы решения. Найдём производные: Составим и упростим «формульный» корень: Что и говорить, получилась конфетка. Ознакомьтесь для сравнения, как Фихтенгольц бодался с площадью эллипсоида вращения. Согласно теоретической ремарке, рассматриваем верхнюю полуокружность. Она «прорисовывается» при изменении значения параметра в пределах (легко видеть, что на данном промежутке), таким образом: Ответ: Если решить задачу в общем виде, то получится в точности школьная формула площади сферы , где – её радиус. Что-то больно простая задачка, даже стыдно стало…. предлагаю вам исправить такую недоработку =) Пример 4 Вычислить площадь поверхности, полученной вращением первой арки циклоиды вокруг оси . Задание креативное. Постарайтесь вывести или интуитивно догадаться о формуле вычисления площади поверхности, полученной вращением кривой вокруг оси ординат. И, конечно, снова следует отметить преимущество параметрических уравнений – их не нужно как-то видоизменять; не нужно заморачиваться с нахождением других пределов интегрирования. График циклоиды можно посмотреть на странице Площадь и объем, если линия задана параметрически. Поверхность вращения будет напоминать… даже не знаю с чем сравнить… что-то неземное – округлой формы с остроконечным углублением посередине. Вот для случая вращения циклоиды вокруг оси ассоциация в голову мгновенно пришла – продолговатый мяч для игры в регби. Решение и ответ в конце урока. Завершаем наш увлекательный обзор случаем полярных координат. Да, именно обзор, если вы заглянете в учебники по математическому анализу (Фихтенгольца, Бохана, Пискунова, др. авторов), то сможете раздобыть добрый десяток (а то и заметно больше) стандартных примеров, среди которых вполне возможно найдётся нужная вам задача. Как вычислить площадь поверхности вращения,
|
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |