Не занимайтесь комплексными числами после комплексного обеда
На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.
Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числами и немного рубить в тригонометрии. Впрочем, если что позабылось, я напомню.
На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся любимой темой,... после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».
Сначала «поднимем» информацию об «обычных» школьных числах. В математике они называются множеством действительных чисел и обозначаются буквой (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:
Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.
Понятие комплексного числа
Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве.
Если хотите, комплексное число – это двумерное число. Оно имеет вид , где и – действительные числа, – так называемая мнимая единица. Число называется действительной частью() комплексного числа , число называется мнимой частью() комплексного числа .
– это ЕДИНОЕ ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами: или переставить мнимую единицу: – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:
Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:
Как упоминалось выше, буквой принято обозначать множество действительных чисел. Множество же комплексных чисел принято обозначать «жирной» или утолщенной буквой . Поэтому на чертеже следует поставить букву , обозначая тот факт, что у нас комплексная плоскость.
Комплексная плоскость состоит из двух осей:
– действительная ось
– мнимая ось
Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать масштаб, отмечаем:
ноль;
единицу по действительной оси;
мнимую единицу по мнимой оси.
Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .
Да чего тут мелочиться, рассмотрим чисел десять.
Построим на комплексной плоскости следующие комплексные числа:
, ,
, ,
, , ,
По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.
Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось обозначает в точности множество действительных чисел , то есть на оси сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел является подмножеством множества комплексных чисел .
Числа , , – это комплексные числа с нулевой мнимой частью.
Числа , , – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси .
В числах , , , и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не чертят, потому что они сливаются с осями.
Алгебраическая форма комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел
С алгебраической формой комплексного числа мы уже познакомились, – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.
Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.
Сложение комплексных чисел
Пример 1
Сложить два комплексных числа ,
Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:
Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.
Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.
Для комплексных чисел справедливо правило первого класса: – от перестановки слагаемых сумма не меняется.
Вычитание комплексных чисел
Пример 2
Найти разности комплексных чисел и , если ,
Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:
Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .
Рассчитаем вторую разность:
Здесь действительная часть тоже составная:
Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.
Умножение комплексных чисел
Настал момент познакомить вас со знаменитым равенством:
Пример 3
Найти произведение комплексных чисел ,
Очевидно, что произведение следует записать так:
Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что и быть внимательным.
Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.
Я распишу подробно:
Надеюсь, всем было понятно, что
Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках.
Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .
В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.
Деление комплексных чисел
Для выполнения этого действия нам понадобится понятие сопряжённого комплексного числа. Число называют сопряжённым для числа (и наоборот). Таким образом, – это пара сопряженных (по отношению друг к другу) чисел.
Пример 4
Даны комплексные числа , . Найти частное .
Составим частное:
Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю число .
Cмотрим на наш знаменатель: . В знаменателе находится число вида , поэтому сопряженным для него является , то есть .
Согласно правилу, знаменатель нужно умножить на , и чтобы ничего не изменилось, домножить числитель на то же самое число :
Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться бородатой формулой (помним, что и не путаемся в знаках!!!).
Распишу подробно:
Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .
В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:
Редко, но встречается такое задание:
Пример 5
Дано комплексное число . Записать данное число в алгебраической форме (запоминайте, кто не успел запомнить: ).
Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю число, то есть на . Далее пользуемся формулой :
– обращаю внимание, что исходное и полученное – это одно и то же число.
Пример 6
Даны два комплексных числа , . Найти их сумму, разность, произведение и частное.
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что
Тригонометрическая и показательная форма комплексного числа
В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы, методический материал можно найти на странице Математические формулы и таблицы. Без таблиц далеко не уехать.
Любое комплексное число (кроме нуля) можно записать в тригонометрической форме:
, где – это модуль комплексного числа, а – аргумент комплексного числа. Не разбегаемся, всё проще, чем кажется.
Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что :
Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Модуль комплексного числа стандартно обозначают: или
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений «а» и «бэ».
Примечание: модуль комплексного числа представляет собой обобщение понятиямодуля действительного числа, как расстояния от точки до начала координат.
Аргументом комплексного числа называется угол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: .
Рассматриваемый принцип фактически схож с полярными координатами, где полярный радиус и полярный угол однозначно определяют точку.
Аргумент комплексного числа стандартно обозначают: или
Из геометрических соображений получается следующая формула для нахождения аргумента:
. Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-й и не 4-й координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.
Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.
Пример 7
Представить в тригонометрической форме комплексные числа: , , , .
Выполним чертёж:
На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа:
Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол.
1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме: .
Ясно, как день, обратное проверочное действие:
2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: .
Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):
3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: .
Проверка:
4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно: . Проверка:
Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить, что и – это один и тот же угол.
Таким образом, запись принимает вид:
Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:
Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче!
В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...». Это действительно очевидно и легко решается устно.
Перейдем к рассмотрению более распространенных случаев. Как я уже отмечал, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число . При этом возможны три варианта (их полезно переписать к себе в тетрадь):
1) Если (1-я и 4-я координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле .
2) Если (2-я координатная четверть), то аргумент нужно находить по формуле .
3) Если (3-я координатная четверть), то аргумент нужно находить по формуле .
Пример 8
Представить в тригонометрической форме комплексные числа: , , , .
Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить. Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета.
Эх, сто лет от руки ничего не чертил, держите:
Как всегда, грязновато получилось =)
Я представлю в тригонометрической форме числа и , первое и третье числа будут для самостоятельного решения.
Представим в тригонометрической форме число . Найдем его модуль и аргумент.
Поскольку (случай 2), то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
– число в тригонометрической форме.
Расскажу о забавном способе проверки. Если вы будете выполнять чертеж на клетчатой бумаге в том масштабе, который у меня (1 ед. = 1 см), то можно взять линейку и измерить модуль в сантиметрах. Если есть транспортир, то можно непосредственно по чертежу измерить и угол.
Перечертите чертеж в тетрадь и измерьте линейкой расстояние от начала координат до числа . Вы убедитесь, что действительно . Также транспортиром можете измерить угол и убедиться, что действительно .
Представим в тригонометрической форме число . Найдем его модуль и аргумент.
Поскольку (случай 1), то (минус 60 градусов).
Таким образом:
– число в тригонометрической форме.
А вот здесь, как уже отмечалось, минусы не трогаем.
Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол – это в точности табличный угол (или 300 градусов):
– число в исходной алгебраической форме.
Числа и представьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока.
В конце параграфа кратко о показательной форме комплексного числа.
Любое комплексное число (кроме нуля) можно записать в показательной форме:
, где – это модуль комплексного числа, а – аргумент комплексного числа.
Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде .
Например, для числа предыдущего примера у нас найден модуль и аргумент: , . Тогда данное число в показательной форме запишется следующим образом: .
Число в показательной форме будет выглядеть так:
Число – так:
И т.д.
Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .
Возведение комплексных чисел в степень
Начнем со всеми любимого квадрата.
Пример 9
Возвести в квадрат комплексное число
Здесь можно пойти двумя путями, первый способ это переписать степень как произведение множителей и перемножить числа по правилу умножения многочленов.
Для комплексного числа легко вывести свою формулу сокращенного умножения:
. Аналогичную формулу можно вывести для квадрата разности, а также для куба суммы и куба разности. Но эти формулы более актуальны для задач комплексного анализа, поэтому на данном уроке я воздержусь от подробных выкладок.
Что делать, если комплексное число нужно возвести, скажем, в 5-ю, 10-ю или 100-ю степень? Ясно, что в алгебраической форме проделать такой трюк практически невозможно, действительно, подумайте, как вы будете решать пример вроде ?
И здесь на помощь приходит тригонометрическая форма комплексного числа и, так называемая, формула Муавра: Если комплексное число представлено в тригонометрической форме , то при его возведении в натуральную степень справедлива формула:
Данная формула следует из правила умножения комплексных чисел, представленных в тригонометрической форме: чтобы найти произведение чисел , нужно перемножить их модули и сложить аргументы:
Аналогично для показательной формы: если , то:
Просто до безобразия.
Пример 10
Дано комплексное число , найти .
Что нужно сделать? Сначала нужно представить данное число в тригонометрической форме. Внимательные читатели заметили, что в Примере 8 мы это уже сделали:
Тогда, по формуле Муавра:
Упаси вас, не нужно считать на калькуляторе , а вот угол в большинстве случае следует упростить. Как упростить? Образно говоря, нужно избавиться от лишних оборотов. Один оборот составляет радиан или 360 градусов. Выясним сколько у нас оборотов в аргументе . Для удобства делаем дробь правильной: , после чего становится хорошо видно, что можно убавить один оборот: . Надеюсь всем понятно, что и – это один и тот же угол.
Таким образом, окончательный ответ запишется так:
Любители стандартов везде и во всём могут переписать ответ в виде:
(т.е. убавить еще один оборот и получить значение аргумента в стандартном виде).
Хотя – ни в коем случае не ошибка.
Пример 11
Дано комплексное число , найти . Полученный аргумент (угол) упростить, результат представить в алгебраической форме.
Это пример для самостоятельного решения, полное решение и ответ в конце урока.
Отдельная разновидность задачи возведения в степень – это возведение в степень чисто мнимых чисел.
Пример 12
Возвести в степень комплексные числа , ,
Здесь тоже всё просто, главное, помнить знаменитое равенство.
Если мнимая единица возводится в четную степень, то техника решения такова:
Если мнимая единица возводится в нечетную степень, то «отщипываем» одно «и», получая четную степень:
Если есть минус (или любой действительный коэффициент), то его необходимо предварительно отделить:
Пример 13
Возвести в степень комплексные числа ,
Это пример для самостоятельного решения.
Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями
Наконец-то. Меня всю дорогу подмывало привести этот маленький примерчик:
Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень – можно! А точнее, два корня:
Действительно ли найденные корни являются решением уравнения ? Выполним проверку:
Что и требовалось проверить.
Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: . Заметьте, что это сопряжённые комплексные числа (числа вида , в нашем случае с нулевой действительной частью).
Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно: , , , , и т.д. Во всех случаях получается два сопряженных комплексных корня.
О том, как извлечь квадратный корень из комплексного числа с ненулевой мнимой частью, я расскажу чуть позже, а пока нечто знакомое:
Пример 14
Решить квадратное уравнение
Вычислим дискриминант:
Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!
По известным формулам получаем два корня:
– сопряженные комплексные корни
Таким образом, уравнение имеет два сопряженных комплексных корня: ,
Нетрудно понять,что в поле комплексных чисел «школьное» квадратное уравнение всегда при двух корнях! И вообще, любое уравнение вида имеет ровно комплексных корней, часть которых (или все) могут быть действительными.
Простой пример для самостоятельного решения:
Пример 15
Найти корни уравнения и разложить квадратный двучлен на множители.
Разложение на множители осуществляется опять же по стандартной школьной формуле. Но на этом тема не закрыта! Совсем скоро вы будете уверенно решать квадратные уравнения с комплексными коэффициентами(которые не являются действительными).
Как извлечь корень из произвольного комплексного числа?
Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при получается квадратный корень . Что касается именно квадратного корня, то он успешно извлекается и «алгебраическим» методом, который рассмотрен на уроке Выражения, уравнения и системы уравнений с комплексными числами. Но то позже – здесь и сейчас мы познакомимся с универсальным способом, пригодным для произвольного «эн»:
Уравнение вида имеет ровно корней , которые можно найти по формуле:
, где – это модуль комплексного числа , – его аргумент, а параметр принимает значения:
Пример 16
Найти корни уравнения
Перепишем уравнение в виде
В данном примере , , поэтому уравнение будет иметь два корня: и .
Общую формулу можно сразу немножко детализировать:
,
Теперь нужно найти модуль и аргумент комплексного числа :
Число располагается в первой четверти, поэтому:
Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.
Еще более детализируем формулу:
,
На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось.
Подставляя в формулу значение , получаем первый корень:
Подставляя в формулу значение , получаем второй корень:
Ответ: ,
При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.
Следует отметить, что на практике аргумент подкоренного числа может оказаться не так «хорош», как в рассмотренном примере. В этом случае для извлечения квадратного корня лучше использовать упомянутый выше «алгебраический» метод.
И напоследок рассмотрим задание-«хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .
Пример 17
Найти корни уравнения , где
Сначала представим уравнение в виде :
Если , тогда
Обозначим привычной формульной буквой: .
Таким образом, требуется найти корни уравнения
В данном примере , а значит, уравнение имеет ровно три корня: , ,
Детализирую общую формулу:
,
Найдем модуль и аргумент комплексного числа :
Число располагается во второй четверти, поэтому:
Еще раз детализирую формулу:
,
Корень удобно сразу же упростить:
Подставляем в формулу значение и получаем первый корень:
Подставляем в формулу значение и получаем второй корень:
Подставляем в формулу значение и получаем третий корень:
Очень часто полученные корни требуется изобразить графически:
Как выполнить чертеж?
Сначала на калькуляторе находим, чему равен модуль корней и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.
Теперь берем аргумент первого корня и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром и ставим на чертеже точку .
Берем аргумент второго корня и переводим его в градусы: . Отмеряем транспортиром и ставим на чертеже точку .
По такому же алгоритму строится точка
Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж.
Уравнения четвертого и высших порядков встречаются крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами.
Пример 8: Решение: Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку (случай 1), то . Таким образом: – число в тригонометрической форме.
Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку (случай 3), то . Таким образом: – число в тригонометрической форме.
Пример 11: Решение: Представим число в тригонометрической форме: (это число Примера 8). Используем формулу Муавра :