Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
Три дня в деканате покойник лежал, в штаны Пифагора одетый, В руках Фихтенгольца он томик держал, что сжил его с белого света, К ногам привязали тройной интеграл, и в матрицу труп обернули, А вместо молитвы какой-то нахал прочёл теорему Бернулли.
Тройные интегралы – это то, чего уже можно не бояться =) Ибо если Вы читаете сей текст, то, скорее всего, неплохо разобрались с теорией и практикой «обычных» интегралов, а также двойными интегралами. А там, где двойной, неподалёку и тройной:
И в самом деле, чего тут опасаться? Интегралом меньше, интегралом больше….
Разбираемся в записи:
– значок тройного интеграла;
– подынтегральная функция трёх переменных;
– произведение дифференциалов.
– область интегрирования.
Особо остановимся на области интегрирования. Если в двойном интеграле она представляет собой плоскую фигуру, то здесь – пространственное тело, которое, как известно, ограничено множеством поверхностей. Таким образом, помимо вышеуказанного вы должны ориентироваться в основных поверхностях пространства и уметь выполнять простейшие трёхмерные чертежи.
Некоторые приуныли, понимаю…. Увы, статью нельзя озаглавить «тройные интегралы для чайников», и кое-что знать/уметь нужно. Но ничего страшного – весь материал изложен в предельно доступной форме и осваивается в кратчайшие сроки!
Что значит вычислить тройной интеграл и что это вообще такое?
Вычислить тройной интеграл – это значит найти ЧИСЛО:
В простейшем случае, когда , тройной интеграл численно равен объёму тела . И действительно, в соответствии с общим смыслом интегрирования, произведение равно бесконечно малому объёму элементарного «кирпичика» тела. А тройной интеграл как раз и объединяет все эти бесконечно малые частички по области , в результате чего получается интегральное (суммарное) значение объёма тела: .
Кроме того, у тройного интеграла есть важные физические приложения. Но об этом позже – во 2-й части урока, посвящённой вычислениям произвольных тройных интегралов, у которых функция в общем случае отлична от константы и непрерывна в области . В данной же статье детально рассмотрим задачу нахождения объёма, которая по моей субъективной оценке встречается в 6-7 раз чаще.
Как решить тройной интеграл?
Ответ логично вытекает из предыдущего пункта. Необходимо определить порядок обхода тела и перейти к повторным интегралам. После чего последовательно расправиться с тремя одиночными интегралами.
Как видите, вся кухня очень и очень напоминает двойные интегралы, с тем отличием, что сейчас у нас добавилась дополнительная размерность (грубо говоря, высота). И, наверное, многие из вас уже догадались, как решаются тройные интегралы.
Развеем оставшиеся сомнения:
Пример 1
С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями
Пожалуйста, перепишите столбиком на бумагу:
И ответьте на следующие вопросы. Знаете ли Вы, какие поверхности задают эти уравнения? Понятен ли Вам неформальный смысл этих уравнений? Представляете ли Вы, как данные поверхности расположены в пространстве?
Если Вы склоняетесь к общему ответу «скорее нет, чем да», то обязательно проработайте урок Основные поверхности пространства, иначе дальше будет не продвинуться!
Решение: используем формулу .
Для того чтобы выяснить порядок обхода тела и перейти к повторным интегралам нужно (всё гениальное просто) понять, что это за тело. И такому пониманию во многих случаях здОрово способствуют чертежи.
По условию, тело ограничено несколькими поверхностями. С чего начать построение? Предлагаю следующий порядок действий:
Сначала изобразим параллельную ортогональную проекцию тела на координатную плоскость . Первый раз сказал, как эта проекция называется, lol =)
Коль скоро проецирование проводится вдоль оси , то в первую очередь целесообразно разобраться с поверхностями, которые параллельны данной оси. Напоминаю, что уравнения таких поверхностей не содержат буквы «зет». В рассматриваемой задаче их три:
– уравнение задаёт координатную плоскость , которая проходит через ось ;
– уравнение задаёт координатную плоскость , которая проходит через ось ;
– уравнение задаёт плоскость, проходящую через «одноимённую» «плоскую» прямую параллельно оси .
Скорее всего, искомая проекция представляет собой следующий треугольник:
Возможно, не все до конца поняли, о чём речь. Представьте, что из экрана монитора выходит ось и утыкается прямо в вашу переносицу (т.е. получается, что вы смотрите на 3-мерный чертёж сверху). Исследуемое пространственное тело находится в бесконечном трёхгранном «коридоре» и его проекция на плоскость , вероятнее всего, представляет собой заштрихованный треугольник.
Обращаю особое внимание, что пока мы высказали лишь предположение о проекции и оговорки «скорее всего», «вероятнее всего» были не случайны. Дело в том, что проанализированы ещё не все поверхности и может статься так, что какая-нибудь из них «оттяпает» часть треугольника. В качестве наглядного примера напрашивается сфера с центром в начале координат радиусом мЕньшим единицы, например, сфера – её проекция на плоскость (круг ) не полностью «накроет» заштрихованную область, и итоговая проекция тела будет вовсе не треугольником (круг «срежет» ему острые углы).
На втором этапе выясняем, чем тело ограничено сверху, чем снизу и выполняем пространственный чертёж. Возвращаемся к условию задачи и смотрим, какие поверхности остались. Уравнение задаёт саму координатную плоскость , а уравнение – параболический цилиндр, расположенный над плоскостью и проходящий через ось . Таким образом, проекция тела действительно представляет собой треугольник.
Кстати, здесь обнаружилась избыточность условия – в него было не обязательно включать уравнение плоскости , поскольку поверхность , касаясь оси абсцисс, и так замыкает тело. Интересно отметить, что в этом случае мы бы не сразу смогли начертить проекцию – треугольник «прорисовался» бы только после анализа уравнения .
Аккуратно изобразим фрагмент параболического цилиндра и искомое тело:
После выполнения чертежей с порядком обхода тела никаких проблем!
Сначала определим порядок обхода проекции(при этом ГОРАЗДО УДОБНЕЕ ориентироваться по двумерному чертежу). Это делается АБСОЛЮТНО ТАК ЖЕ, как и в двойных интегралах! Вспоминаем лазерную указку и сканирование плоской области. Выберем «традиционный» 1-й способ обхода:
Далее берём в руки волшебный фонарик, смотрим на трёхмерный чертёж и строго снизу вверх просвечиваем пациента. Лучи входят в тело через плоскость и выходят из него через поверхность . Таким образом, порядок обхода тела:
Перейдём к повторным интегралам:
С интегралами опять рекомендую разбираться по отдельности:
Что получилось? По существу решение свелось к двойному интегралу, и именно – к формуле объёма цилиндрического бруса! Дальнейшее хорошо знакомо:
2)
3)
Обратите внимание на рациональную технику решения 3-го интеграла.
Ответ:
Вычисления всегда можно записать и «одной строкой»:
Но с этим способом будьте осторожнее – выигрыш в скорости чреват потерей качества, и чем труднее пример, тем больше шансов допустить ошибку.
Ответим на важный вопрос:
Нужно ли делать чертежи, если условие задачи не требует их выполнения?
Можно пойти четырьмя путями:
1) Изобразить проекцию и само тело. Это самый выигрышный вариант – если есть возможность выполнить два приличных чертежа, не ленитесь, делайте оба чертежа. Рекомендую в первую очередь.
2) Изобразить только тело. Годится, когда у тела несложная и очевидная проекция. Так, например, в разобранном примере хватило бы и трёхмерного чертежа. Однако тут есть и минус – по 3D-картинке неудобно определять порядок обхода проекции, и этот способ я бы советовал только людям с хорошим уровнем подготовки.
3) Изобразить только проекцию. Тоже неплохо, но тогда обязательны дополнительные письменные комментарии, чем ограничена область с различных сторон. К сожалению, третий вариант зачастую бывает вынужденным – когда тело слишком велико либо его построение сопряжено с иными трудностями. И такие примеры мы тоже рассмотрим.
4) Обойтись вообще без чертежей. В этом случае нужно представлять тело мысленно и закомментировать его форму/расположение письменно. Подходит для совсем простых тел либо задач, где выполнение обоих чертежей затруднительно. Но всё же лучше сделать хотя бы схематический рисунок, поскольку «голое» решение могут и забраковать.
Следующее тело для самостоятельного дела:
Пример 2
С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями
В данном случае область интегрирования задана преимущественно неравенствами, и это даже лучше – множество неравенств задаёт 1-й октант, включая координатные плоскости, а неравенство – полупространство, содержащее начало координат (проверьте) + саму плоскость. «Вертикальная» плоскость рассекает параболоид по параболе и на чертеже желательно построить данное сечение. Для этого нужно найти дополнительную опорную точку, проще всего – вершину параболы (рассматриваем значения и рассчитываем соответствующее «зет»).
Примерный образец оформления задачи в конце урока.
Продолжаем разминаться:
Пример 3
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Выполнить чертёж.
Решение: формулировка «выполнить чертёж» даёт нам некоторую свободу, но, скорее всего, подразумевает выполнение пространственного чертежа. Однако и проекция тоже не помешает, тем более, она здесь не самая простая.
Придерживаемся отработанной ранее тактики – сначала разберёмся с поверхностями, которые параллельны оси аппликат. Уравнения таких поверхностей не содержат в явном виде переменную «зет»:
– уравнение задаёт координатную плоскость , проходящую через ось (которая на плоскости определяется «одноимённым» уравнением );
– уравнение задаёт плоскость, проходящую через «одноимённую» «плоскую» прямую параллельно оси .
Но две прямые не задают ограниченную проекцию, и, очевидно, её должны «прорисовать» линии, по которым параболический цилиндр пересекает плоскость . Чтобы найти уравнения этих линий нужно решить простейшую систему:
Подставим в первое уравнение:
– получены две прямые, лежащие в плоскости , параллельные оси .
Составим порядок обхода тела, при этом «иксовые» и «игрековые» пределы интегрирования, напоминаю, удобнее выяснять по двумерному чертежу:
Таким образом:
1)
2)
При интегрировании по «игрек» – «икс» считается константой, поэтому константу целесообразно сразу вынести за знак интеграла.
3)
Ответ:
Да, чуть не забыл, в большинстве случаев полученный результат малополезно (и даже вредно) сверять с трёхмерным чертежом, поскольку с большой вероятностью возникнет иллюзия объёма, о которой я рассказал ещё на уроке Объем тела вращения. Так, оценивая тело рассмотренной задачи, лично мне показалось, что в нём гораздо больше 4 «кубиков».
Следующий пример для самостоятельного решения:
Пример 4
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскость .
Примерный образец оформления задачи в конце урока.
Не редкость, когда выполнение трёхмерного чертежа затруднено:
Пример 5
С помощью тройного интеграла найти объём тела, заданного ограничивающими его поверхностями
Решение: проекция здесь несложная, но вот над порядком её обхода нужно подумать. Если выбрать 1-й способ, то фигуру придётся разделить на 2 части, что неиллюзорно грозит вычислением суммы двух тройных интегралов. В этой связи гораздо перспективнее выглядит 2-й путь. Выразим и изобразим проекцию данного тела на чертеже:
Прошу прощения за качество некоторых картинок, я их вырезаю прямо из собственных рукописей.
Выбираем более выгодный порядок обхода фигуры:
Теперь дело за телом. Снизу оно ограничено плоскостью , сверху – плоскостью , которая проходит через ось ординат. И всё бы было ничего, но последняя плоскость слишком крутА и построить область не так-то просто. Выбор тут незавиден: либо ювелирная работа в мелком масштабе (т.к. тело достаточно тонкое), либо чертёж высотой порядка 20 сантиметров (да и то, если вместится).
Но есть третий, исконно русский метод решения проблемы – забить =) И вместо трёхмерного чертежа обойтись словесным описанием: «Данное тело ограничено цилиндрами и плоскостью сбоку, плоскостью – снизу и плоскостью – сверху».
«Вертикальные» пределы интегрирования, очевидно, таковы:
Вычислим объём тела, не забывая, что проекцию мы обошли менее распространённым способом:
1)
2)
3)
Ответ:
Как вы заметили, предлагаемые в задачах тела не дороже сотни баксов часто ограничены плоскостью снизу. Но это не есть какое-то правило, поэтому всегда нужно быть начеку – может попасться задание, где тело расположено и под плоскостью . Так, например, если в разобранной задаче вместо рассмотреть плоскость , то исследованное тело симметрично отобразится в нижнее полупространство и будет ограничено плоскостью снизу, а плоскостью – уже сверху!
Легко убедиться, что получится тот же самый результат:
(помним, что тело нужно обходить строго снизу вверх!)
Кроме того, «любимая» плоскость может оказаться вообще не при делах, простейший пример: шар, расположенный выше плоскости – при вычислении его объёма уравнение не понадобится вообще.
Все эти случаи мы рассмотрим, а пока аналогичное задание для самостоятельного решения:
Пример 6
С помощью тройного интеграла найти объём тела, ограниченного поверхностями
Краткое решение и ответ в конце урока.
Переходим ко второму параграфу с не менее популярными материалами:
Тройной интеграл в цилиндрических координатах
Цилиндрические координаты – это, по сути, полярные координаты в пространстве. В цилиндрической системе координат положение точки пространства определяется полярными координатами и точки – проекции точки на плоскость и аппликатой самой точки .
Переход от трёхмерной декартовой системы к цилиндрической системе координат осуществляется по следующим формулам:
Применительно к нашей теме преобразование выглядит следующим образом:
И, соответственно, в упрощённом случае, который мы рассматриваем в этой статье:
Главное, не забывать про дополнительный множитель «эр» и правильно расставлять полярные пределы интегрирования при обходе проекции:
Пример 7
Вычислить с помощью тройного интеграла объём тела, ограниченного поверхностями . Выполнить чертежи данного тела и его проекции на плоскость .
Решение: придерживаемся того же порядка действий: в первую очередь рассматриваем уравнения, в которых отсутствует переменная «зет». Оно здесь одно. Проекция цилиндрической поверхности на плоскость представляет собой «одноимённую» окружность .
Плоскости ограничивают искомое тело снизу и сверху («высекают» его из цилиндра) и проецируются в круг :
На очереди трёхмерный чертёж. Основная трудность состоит в построении плоскости , которая пересекает цилиндр под «косым» углом, в результате чего получается эллипс. Уточним данное сечение аналитически: для этого перепишем уравнение плоскости в функциональном виде и вычислим значения функции («высоту») в напрашивающихся точках , которые лежат на границе проекции:
Отмечаем найденные точки на чертеже и аккуратно (а не так, как я =)) соединяем их линией:
Проекция тела на плоскость представляет собой круг, и это весомый аргумент в пользу перехода к цилиндрической системе координат:
Найдём уравнения поверхностей в цилиндрических координатах:
«Вертикальные» пределы интегрирования тоже очевидны – входим в тело через плоскость и выходим из него через плоскость :
Перейдём к повторным интегралам:
При этом множитель «эр» сразу ставим в «свой» интеграл.
Веник как обычно легче сломать по прутикам:
1)
Сносим результат в следующий интеграл:
2)
А тут не забываем, что «фи» считается константой. Но это до поры до времени:
3)
Ответ:
Похожее задание для самостоятельного решения:
Пример 8
Вычислить с помощью тройного интеграла объём тела, ограниченного поверхностями . Выполнить чертежи данного тела и его проекции на плоскость .
Примерный образец чистового оформления в конце урока.
Обратите внимание, что в условиях задач ни слова не сказано о переходе к цилиндрической системе координат, и несведущий человек будет бодаться с трудными интегралами в декартовых координатах. …А может и не будет – ведь есть третий, исконно русский способ решения проблем =)
Всё только начинается! …в хорошем смысле: =)
Пример 9
С помощью тройного интеграла найти объем тела, ограниченного поверхностями
Скромно и со вкусом.
Решение: данное тело ограничено конической поверхностью и эллиптическим параболоидом . Читатели, которые внимательно ознакомились с материалами статьи Основные поверхности пространства, уже представили, как выглядит тело, но на практике часто встречаются более сложные случаи, поэтому я проведу подробное аналитическое рассуждение.
Сначала найдём линии, по которым пересекаются поверхности. Составим и решим следующую систему:
Из 1-го уравнения почленно вычтем второе:
В результате получено два корня:
Подставим найденное значение в любое уравнение системы:
, откуда следует, что
Таким образом, корню соответствует единственная точка – начало координат. Естественно – ведь вершины рассматриваемых поверхностей совпадают.
Теперь подставим второй корень – тоже в любое уравнение системы:
Каков геометрический смысл полученного результата? «На высоте» (в плоскости ) параболоид и конус пересекаются по окружности – единичного радиуса с центром в точке .
При этом «чаша» параболоида вмещает в себя «воронку» конуса, поэтому образующие конической поверхности следует прочертить пунктиром (за исключением отрезка дальней от нас образующей, который виден с данного ракурса):
Проекцией тела на плоскость является круг с центром в начале координат радиуса 1, который я даже не удосужился изобразить ввиду очевидности данного факта (однако письменный комментарий делаем!). Кстати, в двух предыдущих задачах на чертёж проекции тоже можно было бы забить, если бы не условие.
При переходе к цилиндрическим координатам по стандартным формулам неравенство запишется в простейшем виде и с порядком обхода проекции никаких проблем:
Найдём уравнения поверхностей в цилиндрической системе координат:
Так как в задаче рассматривается верхняя часть конуса, то из уравнения выражаем:
«Сканируем тело» снизу вверх. Лучи света входят в него через эллиптический параболоид и выходят через коническую поверхность . Таким образом, «вертикальный» порядок обхода тела:
Остальное дело техники:
Ответ:
Не редкость, когда тело задаётся не ограничивающими его поверхностями, а множеством неравенств:
Пример 10
С помощью тройного интеграла вычислить объём заданного тела:
, где – произвольное положительное число.
Данная задача хоть и содержит параметр, но допускает выполнение точного чертежа, отражающего принципиальный вид тела. Подумайте, как выполнить построение. Краткое решение и ответ – в конце урока.
…ну что, ещё парочку заданий? Думал закончить урок, но прямо так и чувствую, что вы хотите ещё =)
Пример 11
С помощью тройного интеграла вычислить объём заданного тела:
, где – произвольное положительное число.
Решение: неравенство задаёт шар с центром в начале координат радиуса , а неравенство – «внутренность» кругового цилиндра с осью симметрии радиуса . Таким образом, искомое тело ограничено круговым цилиндром сбоку и симметричными относительно плоскости сферическими сегментами сверху и снизу.
Принимая за базовую единицу измерения, выполним чертёж:
Точнее, его следует назвать рисунком, поскольку пропорции по оси я выдержал не очень-то хорошо. Однако, справедливости ради, по условию вообще не требовалось ничего чертить и такой иллюстрации оказалось вполне достаточно.
Обратите внимание, что здесь не обязательно выяснять высоту, на которой цилиндр высекает из шара «шапки» – если взять в руки циркуль и наметить им окружность с центром в начале координат радиуса 2 см, то точки пересечения с цилиндром получатся сами собой.
Кстати, как найти эту высоту аналитически? Нужно подставить сумму квадратов в уравнение сферы :
Но вернёмся к теме. Проекция данного тела на плоскость представляет собой круг с центром в начале координат радиуса (на чертеже отсутствует) и поэтому нас снова выручают цилиндрические координаты. Порядок обхода проекции тривиален:
По формулам перехода найдём уравнение сферы в цилиндрических координатах:
Лучи «лазера» входят в тело через нижнюю «шапку» и выходят через верхнюю, таким образом:
Можно сослаться на симметрию и вычислить объём половины тела, но, как ни странно, это только заморочит решение – гораздо проще провести формальные вычисления.
Расписываем и щёлкаем повторные интегралы:
1)
Вот так – и никаких комментов о симметрии. Сносим результат в следующий интеграл:
Сносим полученную константу в последний интеграл, а точнее, сразу выносим её за его пределы:
3)
Ответ:
Косвенным признаком правильности вычислений является тот факт, что параметр вошёл в ответ в кубе. Ну и ещё на всякий пожарный, проверим, не получился ли случаем результат отрицательным: – нет, не получился. Хотя всё это, конечно, нельзя считать надёжной проверкой.
Заключительное задание для самостоятельного решения:
Пример 12
С помощью тройного интеграла вычислить объём тела, ограниченного поверхностями
Особенность этого примера состоит в том, что здесь затруднено построение трёхмерного чертежа (уже знакомый из предыдущего параграфа мотив) и в этой связи тело придётся представить мысленно. Да и проекция, к слову, тоже не сахар.
В данную статью я включил не самые сложные примеры, и желающие могут закачать дополнительные задачи с готовыми решениями, в частности, интересны и поучительны примеры, где тело приходится разделять на 2 части.
Пример 2: Решение: изобразим данное тело на чертеже.
Примечание: при (чёрный крестик) (чёрная точка – вершина параболы). Порядок обхода тела:
Объём тела вычислим с помощью тройного интеграла:
Ответ:
Пример 4: Решение: изобразим проекцию данного тела на плоскость :
Данное тело ограничено параболическими цилиндрами сбоку, плоскостью – снизу и плоскостью – сверху (последнюю лучше всего изобразитьв отрезках):
Выберем следующий порядок обхода тела:
Таким образом:
Ответ:
Пример 6: Решение: изобразим проекцию данного тела на плоскость :
Данное тело ограничено параболическим цилиндром и плоскостью сбоку, плоскостью – снизу и параболическим цилиндром – сверху. Примечание: обратите внимание, что при любых , т.е. данная поверхность лежит выше координатной плоскости . Выберем следующий порядок обхода тела:
Вычислим объём тела:
Ответ:
Пример 8: Решение: данное тело ограничено плоскостью снизу, эллиптическим параболоидом – сверху и цилиндром – сбоку. Выполним чертежи:
Объём тела вычислим с помощью тройного интеграла, используя цилиндрическую систему координат:
Порядок обхода тела:
Таким образом:
Ответ:
Пример 10: Решение: данное тело ограничено плоскостью снизу, сферой – сверху и цилиндрической поверхностью – изнутри:
Проекция тела на плоскость представляет собой кольцо с внутренним радиусом и внешним радиусом . Объём тела вычислим с помощью тройного интеграла, используя цилиндрическую систему координат: : Порядок обхода тела:
Таким образом:
Ответ:
Пример 12: Решение: изобразим проекцию данного тела на плоскость . Сначала преобразуем уравнение: . Проекцией цилиндра является окружность с центром в точке радиуса . Найдём линию пересечения эллиптического параболоида с плоскостью : – окружность с центром в начале координат радиуса 6. Выполним чертёж:
Искомое тело ограничено плоскостью снизу, эллиптическим параболоидом – сверху и цилиндрической поверхностью – сбоку. Объём тела вычислим с помощью тройного интеграла, используя цилиндрическую систему координат: