Как найти наибольшее и наименьшее значения функции в ограниченной замкнутой области?
Близится к завершению изучение функций нескольких переменных, и сегодня мы рассмотрим ещё одну распространённую задачу, развёрнутую формулировку которой вы видите в заголовке статьи. Как многие догадываются, это пространственный аналог задачи нахождения наибольшего и наименьшего значений функции на отрезке, и для её решения потребуется минимальное знание темы. Заканчивается очередной учебный год, всем хочется на каникулы, и чтобы приблизить этот момент я сразу же перехожу к делу:
Начнём с области. Область, о которой идёт речь в условии, представляет собой ограниченноезамкнутое множество точек плоскости . Например, множество точек, ограниченное треугольником, включая ВЕСЬ треугольник (если из границы «выколоть» хотя бы одну точку, то область перестанет быть замкнутой). На практике также встречаются области прямоугольной, круглой и чуть более сложных форм. Следует отметить, что в теории математического анализа даются строгие определения ограниченности, замкнутости, границы и т.д., но, думаю, все осознаЮт эти понятия на интуитивном уровне, а бОльшего сейчас и не надо.
Плоская область стандартно обозначается буквой , и, как правило, задаётся аналитически – несколькими уравнениями (не обязательно линейными); реже неравенствами. Типичный словесный оборот: «замкнутая область , ограниченная линиями ».
Неотъемлемой частью рассматриваемого задания является построение области на чертеже. Как это сделать? Нужно начертить все перечисленные линии (в данном случае 3 прямые) и проанализировать, что же получилось. Искомую область обычно слегка штрихуют, а её границу выделяют жирной линией:
Эту же область можно задать и линейными неравенствами: , которые почему-то чаще записывают перечислительным списком, а не системой.
Так как граница принадлежит области, то все неравенства, разумеется, нестрогие.
А теперь суть задачи. Представьте, что из начала координат прямо на вас выходит ось . Рассмотрим функцию , которая непрерывнав каждой точке области . График данной функции представляет собой некоторую поверхность, и маленькое счастье состоит в том, что для решения сегодняшней задачи нам совсем не обязательно знать, как эта поверхность выглядит. Она может располагаться выше, ниже, пересекать плоскость – всё это не важно. А важно следующее: согласно теоремам Вейерштрасса, непрерывная в ограниченной замкнутой области функция достигает в ней наибольшего (самого «высокого») и наименьшего (самого «низкого») значений, которые и требуется найти. Такие значения достигаются либо в стационарных точках, принадлежащих области D, либо в точках, которые лежат на границе этой области. Из чего следует простой и прозрачный алгоритм решения:
Пример 1
Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области
Решение: прежде всего, нужно изобразить область на чертеже. К сожалению, мне технически трудно сделать интерактивную модель задачи, и поэтому я сразу приведу финальную иллюстрацию, на которой изображены все «подозрительные» точки , найденные в ходе исследования. Обычно они проставляются одна за другой по мере их обнаружения:
Исходя из преамбулы, решение удобно разбить на два пункта:
Обратите внимание на наше второе счастье – нет никакого смысла проверять достаточное условие экстремума. Почему? Даже если в точке функция достигает, например, локального минимума, то это ЕЩЁ НЕ ЗНАЧИТ, что полученное значение будет минимальным во всей области (см. начало урока о безусловных экстремумах).
Что делать, если стационарная точка НЕ принадлежит области? Почти ничего! Нужно отметить, что и перейти к следующему пункту.
II) Исследуем границу области.
Поскольку граница состоит из сторон треугольника, то исследование удобно разбить на 3 подпункта. Но лучше это сделать не абы как. С моей точки зрения, сначала выгоднее рассмотреть отрезки, параллельные координатным осям, и в первую очередь – лежащие на самих осях. Чтобы уловить всю последовательность и логику действий постарайтесь изучить концовку «на одном дыхании»:
1) Разберёмся с нижней стороной треугольника. Для этого подставим непосредственно в функцию:
Как вариант, можно оформить и так:
Геометрически это означает, что координатная плоскость (которая тоже задаётся уравнением ) «высекает» из поверхности «пространственную» параболу , вершина которой немедленно попадает под подозрение. Выясним, где она находится:
– полученное значение «попало» в область, и вполне может статься, что в точке (отмечаем на чертеже) функция достигает наибольшего либо наименьшего значения во всей области . Так или иначе, проводим вычисления:
Другие «кандидаты» – это, конечно же, концы отрезка. Вычислим значения функции в точках (отмечаем на чертеже):
Тут, кстати, можно выполнить устную мини-проверку по «урезанной» версии :
2) Для исследования правой стороны треугольника подставляем в функцию и «наводим там порядок»:
Здесь сразу же выполним черновую проверку, «прозванивая» уже обработанный конец отрезка:
, отлично.
Геометрическая ситуация родственна предыдущему пункту:
– полученное значение тоже «вошло в сферу наших интересов», а значит, нужно вычислить, чему равна функция в появившейся точке :
Исследуем второй конец отрезка :
Используя функцию , выполним контрольную проверку:
3) Наверное, все догадываются, как исследовать оставшуюся сторону . Подставляем в функцию и проводим упрощения:
Концы отрезка уже исследованы, но на черновике всё равно проверяем, правильно ли мы нашли функцию :
– совпало с результатом 1-го подпункта;
– совпало с результатом 2-го подпункта.
Осталось выяснить, если ли что-то интересное внутри отрезка :
– есть! Подставляя в уравнение прямой , получим ординату этой «интересности»:
Отмечаем на чертеже точку и находим соответствующее значение функции :
Проконтролируем вычисления по «бюджетной» версии :
, порядок.
И заключительный шаг: ВНИМАТЕЛЬНО просматриваем все «жирные» числа, начинающим рекомендую даже составить единый список:
На всякий случай ещё раз закомментирую геометрический смысл результата:
– здесь самая высокая точка поверхности в области ;
– здесь самая низкая точка поверхности в области .
В разобранной задаче у нас выявилось 7 «подозрительных» точек, но от задачи к задаче их количество варьируется. Для треугольной области минимальный «исследовательский набор» состоит из трёх точек. Такое бывает, когда функция , например, задаёт плоскость – совершенно понятно, что стационарные точки отсутствуют, и функция может достигать наибольшего/наименьшего значений только в вершинах треугольника. Но подобных примеров раз, два и обчёлся – обычно приходится иметь дело с какой-нибудь поверхностью 2-го порядка.
Если вы немного порешаете такие задания, то от треугольников голова может пойти кругом, и поэтому я приготовил для вас необычные примеры чтобы она стала квадратной :))
Пример 2
Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями
Пример 3
Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области .
Особое внимание обратите на рациональный порядок и технику исследования границы области, а также на цепочку промежуточных проверок, которая практически стопроцентно позволит избежать вычислительных ошибок. Вообще говоря, решать можно как угодно, но в некоторых задачах, например, в том же Примере 2, есть все шансы значительно усложнить себе жизнь. Примерный образец чистового оформления заданий в конце урока.
Систематизируем алгоритм решения, а то с моей прилежностью паука он как-то затерялся в длинной нити комментариев 1-го примера:
– На первом шаге строим область , её желательно заштриховать, а границу выделить жирной линией. В ходе решения будут появляться точки, которые нужно проставлять на чертеже.
– Найдём стационарные точки и вычислим значения функции только в тех из них, которые принадлежат области . Полученные значения выделяем в тексте (например, обводим карандашом). Если стационарная точка НЕ принадлежит области, то отмечаем этот факт значком либо словесно. Если же стационарных точек нет вовсе, то делаем письменный вывод о том, что они отсутствуют. В любом случае данный пункт пропускать нельзя!
– Исследуем границу области. Сначала выгодно разобраться с прямыми, которые параллельны координатным осям (если таковые есть вообще). Значения функции, вычисленные в «подозрительных» точках, также выделяем. О технике решения очень много сказано выше и ещё кое-что будет сказано ниже – читайте, перечитывайте, вникайте!
– Из выделенных чисел выбираем наибольшее и наименьшее значения и даём ответ. Иногда бывает, что такие значения функция достигает сразу в нескольких точках – в этом случае все эти точки следует отразить в ответе. Пусть, например, и оказалось, что это наименьшее значение. Тогда записываем, что
Заключительные примеры посвящены другим полезным идеям, которые пригодятся на практике:
Пример 4
Найти наибольшее и наименьшее значения функции в замкнутой области .
Я сохранил авторскую формулировку, в которой область задана в виде двойного неравенства. Это условие можно записать эквивалентной системой или же в более традиционном для данной задачи виде:
Напоминаю, что с нелинейными неравенствами мы сталкивались на самом первом уроке по теме ФНП, и если вам не понятен геометрический смысл записи , то, пожалуйста, не откладывайте и проясните ситуацию прямо сейчас ;-)
Решение, как всегда, начинается с построения области, которая представляет собой своеобразную «подошву»:
Мда, иногда приходится грызть не только гранит науки….
I) Найдём стационарные точки:
Система-мечта идиота:)
Стационарная точка принадлежит области, а именно, лежит на её границе.
А так, оно, ничего… весело урок пошёл – вот что значит попить правильного чая =)
II) Исследуем границу области. Не мудрствуя лукаво, начнём с оси абсцисс:
1) Если , то
Найдём, где вершина параболы:
– ценИте такие моменты – «попали» прямо в точку , с которой уже всё ясно. Но о проверке всё равно не забываем:
Вычислим значения функции на концах отрезка:
2) С нижней частью «подошвы» разберёмся «за один присест» – безо всяких комплексов подставляем в функцию, причём, интересовать нас будет лишь отрезок :
Контроль:
Вот это уже вносит некоторое оживление в монотонную езду по накатанной колее. Найдём критические точки:
Решаем квадратное уравнение, помните ещё о таком? …Впрочем, помните, конечно, иначе бы не читали эти строки =) Если в двух предыдущих примерах были удобны вычисления в десятичных дробях (что, кстати, редкость), то здесь нас поджидают привычные обыкновенные дроби. Находим «иксовые» корни и по уравнению определяем соответствующие «игрековые» координаты точек-«кандидатов»:
Вычислим значения функции в найденных точках:
Проверку по функции проведите самостоятельно.
Теперь внимательно изучаем завоёванные трофеи и записываем ответ:
Вот это «кандидаты», так «кандидаты»!
Для самостоятельного решения:
Пример 5
Найти наименьшее и наибольшее значения функции в замкнутой области
Запись с фигурными скобками читается так: «множество точек , таких, что ».
Иногда в подобных примерах используют метод множителей Лагранжа, но реальная необходимость его применять вряд ли возникнет. Так, например, если дана функция с той же областью «дэ», то после подстановки в неё – с производной от никаких трудностей; причём оформляется всё «одной строкой» (со знаками ) без надобности рассматривать верхнюю и нижнюю полуокружности по отдельности. Но, конечно, бывают и более сложные случаи, где без функции Лагранжа (где , например, то же уравнение окружности) обойтись трудно – как трудно обойтись и без хорошего отдыха!
Всем хорошо сдать сессию и до скорых встреч в следующем сезоне!
Решения и ответы:
Пример 2: Решение: изобразим область на чертеже:
I) Вычислим значения функции в стационарных точках, принадлежащих данной области:
II) Исследуем границу области
1) Подставим в функцию:
Вычислим значение функции в точке :
Вычислим значение функции на другом конце отрезка:
2) Подставим в функцию :
Контроль:
Вычислим значение функции в точке :
Вычислим значение функции на конце отрезка:
3) Подставим в функцию : Контроль:
Вычислим значение функции в точке :
Ответ:
Пример 3: Решение: изобразим область на чертеже:
I) Вычислим значения функции в стационарных точках, принадлежащих данной области:
II) Исследуем границу области
1) Если , то – точка уже исследована. Вычислим значение функции на другом конце отрезка:
2) Если , то
Вычислим значение функции в точке :
Вычислим значения функции на концах отрезка:
3) Если , то – точка уже исследована. Другой конец отрезка также исследован.
4) Если , то
Концы отрезка уже исследованы.
Ответ:
Пример 5: Решение: изобразим область на чертеже:
I) Найдём стационарные точки:
, следовательно, , – любое. Таким образом, все точки оси – стационарные. Но область ограничена, и поэтому рассматриваем лишь точки из промежутка .
II) Исследуем границу области. Подставим в функцию (таким образом, учитываются сразу обе полуокружности ):
Найдём критические точки:
Если , то Если , то Вычислим значения функции в точках :