Математика для заочников и не только

Высшая математика – просто и доступно!

Вы находитесь на зеркале сайта mathprofi.ru

Форум, библиотека и блог: mathprofi


Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Примеры решений типовых
задач комплексного анализа

Как найти функцию
комплексной переменной?

Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi.com

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом



  Карта сайта


Функции комплексной переменной.
Дифференцирование функций комплексной переменной.
Условия Коши-Римана


Данная статья открывает серию уроков, на которых я рассмотрю типовые задачи, связанные с теорией функций комплексной переменной. Для успешного освоения примеров необходимо обладать базовыми знаниями о комплексных числах. В целях закрепления и повторения материала достаточно посетить страницу Комплексные числа для чайников. Также потребуются навыки нахождения частных производных второго порядка. Вот они какие, эти частные производные… даже сам сейчас немного удивился, насколько часто встречаются…

Тема, которую мы начинаем разбирать, не представляет особых сложностей, и в функциях комплексной переменной, в принципе, всё понятно и доступно. Главное, придерживаться основного правила, которое выведено мной опытным путём. Читайте дальше!


Понятие функции комплексной переменной

Сначала освежим знания о школьной функции одной переменной:

Функция одной переменной  – это правило, по которому каждому значению независимой переменной  (из области определения) соответствует одно и только одно значение функции . Естественно, «икс» и «игрек» – действительные числа.

В комплексном случае функциональная зависимость задается аналогично:

Однозначная функция комплексной переменной  – это правило, по которому каждому комплексному значению  независимой переменной  (из области определения) соответствует одно и только одно комплексное значение функции . В теории рассматриваются также многозначные и некоторые другие типы функций, но для простоты я остановлюсь на одном определении.

Чем отличается функция комплексной переменной?

Главное отличие: числа комплексные. Я не иронизирую. От таких вопросов нередко впадают в ступор, в конце статьи историю прикольную расскажу. На уроке Комплексные числа для чайников мы рассматривали комплексное число в виде . Поскольку сейчас буква «зет» стала переменной, то её мы будем обозначать следующим образом: , при этом «икс» и «игрек» могут принимать различные действительные значения. Грубо говоря, функция комплексной переменной  зависит от переменных  и , которые принимают «обычные» значения. Из данного факта логично вытекает следующий пункт:

Действительная и мнимая часть функции комплексной переменной

Функцию комплексной переменной можно записать в виде:
Действительная и мнимая часть функции комплексной переменной, где  и  – две функции двух действительных переменных.

Функция называется действительной частью функции .
Функция называется мнимой частью функции .

То есть, функция комплексной переменной  зависит от двух действительных функций  и . Чтобы окончательно всё прояснить рассмотрим практические примеры:

Пример 1

Найти действительную и мнимую часть функции

Решение: Независимая переменная «зет», как вы помните, записывается в виде , поэтому:

(1) В исходную функцию  подставили .

(2) Для первого слагаемого использовали формулу сокращенного умножения . В слагаемом  – раскрыли скобки.

(3) Аккуратно возвели в квадрат , не забывая, что

(4) Перегруппировка слагаемых: сначала переписываем слагаемые, в которых нет мнимой единицы (первая группа), затем слагаемые, где есть  (вторая группа). Следует отметить, что перетасовывать слагаемые не обязательно, и данный этап можно пропустить (фактически выполнив его устно).

(5) У второй группы выносим  за скобки.

В результате наша функция оказалась представлена в виде

Ответ:
 – действительная часть функции .
 – мнимая часть функции .

Что это получились за функции? Самые что ни на есть обыкновенные функции двух переменных, от которых можно найти такие популярные частные производные. Без пощады – находить будем. Но чуть позже.

Кратко алгоритм прорешанной задачи можно записать так: в исходную функцию подставляем , проводим упрощения и делим все слагаемые на две группы – без мнимой единицы (действительная часть) и с мнимой единицей (мнимая часть).

Пример 2

Найти действительную и мнимую часть функции

Это пример для самостоятельного решения. Перед тем как с шашками наголо броситься в бой на комплексной плоскости, позвольте дать самый важный совет по теме:

БУДЬТЕ ВНИМАТЕЛЬНЫ! Внимательным нужно быть, конечно, везде, но в комплексных числах следует быть внимательным, как никогда! Помните, что , аккуратно раскрывайте скобки, ничего не теряйте. По моим наблюдениям, самой распространенной ошибкой является потеря знака. Не спешите!

Полное решение и ответ в конце урока.

Чтобы дальше легче жилось, обратим внимание на пару полезных формул. В Примере 1 было выяснено, что .

Теперь куб. Используя формулу сокращенного умножения , выведем:
.

Рекомендую переписать в тетрадь две рабочие формулы:

Формулы очень удобно использовать на практике, поскольку они значительно ускоряют процесс решения.


Дифференцирование функций комплексной переменной.
Условия Коши-Римана

У меня есть две новости: хорошая и плохая. Начну с хорошей. Для функции комплексной переменной  справедливы правила дифференцирования и таблица производных элементарных функций. Таким образом, производная берётся точно так же, как и в случае функции действительной переменной .

Плохая новость состоит в том, что для многих функций комплексной переменной производной не существует вообще, и приходится выяснять, дифференцируема ли та или иная функция. А «выяснять», как чует ваше сердце, связано с дополнительными заморочками.

Рассмотрим функцию комплексной переменной . Для того, чтобы данная функция была дифференцируема необходимо и достаточно:

1) Чтобы существовали частные производные первого порядка . Об этих обозначениях сразу забудьте, поскольку в теории функции комплексного переменного традиционно используется другой вариант записи: .

2) Чтобы выполнялись так называемые условия Коши-Римана:
Условия Коши-Римана

Только в этом случае будет существовать производная!

Пример 3

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана. В случае выполнения условий Коши-Римана, найти производную функции.

Решение раскладывается на три последовательных этапа:

1) Найдём действительную и мнимую часть функции. Данное задание было разобрано в предыдущих примерах, поэтому запишу без комментариев:

Так как , то:

Таким образом:
 – действительная часть функции ;
 – мнимая часть функции .

Остановлюсь еще на одном техническом моменте: в каком порядке записывать слагаемые в действительной и мнимой частях? Да, в принципе, без разницы. Например, действительную часть можно записать так: , а мнимую – так: .

2) Проверим выполнение условий Коши-Римана. Их два.

Начнем с проверки условия . Находим частные производные:

Таким образом, условие  выполнено.

Несомненно, приятная новость – частные производные почти всегда очень простые.

Проверяем выполнение второго условия :

Получилось одно и то же, но с противоположными знаками, то есть, условие  также выполнено.

Условия Коши-Римана выполнены, следовательно, функция дифференцируема.

3) Найдём производную функции. Производная тоже очень простая и находится по обычным правилам:

Мнимая единица при дифференцировании считается константой.

Ответ:  – действительная часть,  – мнимая часть.
Условия Коши-Римана выполнены, .

Существуют еще два способа нахождения производной, они, конечно, применяются реже, но информация будет полезна для понимания второго урока – Как найти функцию комплексной переменной?

Производную можно найти по формуле:

В данном случае:

Таким образом

Предстоит решить обратную задачу – в полученном выражении нужно вычленить . Для того, чтобы это сделать, необходимо в слагаемых  и  вынести  за скобку:

Обратное действие, как многие заметили, выполнять несколько труднее, для проверки всегда лучше взять выражение  и на черновике либо устно раскрыть обратно скобки, убедившись, что получится именно

Зеркальная формула для нахождения производной:

В данном случае: , поэтому:

Пример 4

Определить действительную  и мнимую  часть  функции . Проверить выполнение условий Коши-Римана. В случае выполнения условий Коши-Римана, найти производную функции.

Краткое решение и примерный образец чистового оформления в конце урока.

Всегда ли выполняются условия Коши-Римана? Теоретически они чаще не выполняются, чем выполняются. Но в практических примерах я не припомню случая, чтобы они не выполнялись =) Таким образом, если у вас «не сошлись» частные производные, то с очень большой вероятностью можно сказать, что вы где-то допустили ошибку.

Усложним наши функции:

Пример 5

Определить действительную  и мнимую  часть  функции . Проверить выполнение условий Коши-Римана. Вычислить

Решение: Алгоритм решения полностью сохраняется, но в конце добавится новый пунктик: нахождение производной в точке. Для куба нужная формула уже выведена:

Определим действительную и мнимую часть данной функции:

Внимание и еще раз внимание!

Так как , то:


Таким образом:
 – действительная часть функции ;
 – мнимая часть функции .

Проверим выполнение условий Коши-Римана:

Проверка второго условия:

Получилось одно и то же, но с противоположными знаками, то есть условие  также выполнено.

Условия Коши-Римана выполнены, следовательно, функция является дифференцируемой:

Вычислим значение производной в требуемой точке:

Ответ: , , условия Коши-Римана выполнены,

Функции с кубами встречаются часто, поэтому пример для закрепления:

Пример 6

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана. Вычислить .

Решение и образец чистового оформления в конце урока.

В теории комплексного анализа определены и другие функции комплексного аргумента: экспонента, синус, косинус и т.д. Данные функции обладают необычными и даже причудливыми свойствами – и это действительно интересно! Очень хочется рассказать, но здесь, так уж получилось, не справочник или учебник, а решебник, поэтому я рассмотрю ту же задачу с некоторыми распространенными функциями.

Сначала о так называемых формулах Эйлера:

Формулы Эйлера

Для любого действительного числа  справедливы следующие формулы:
Формулы Эйлера

Тоже можете переписать в тетрадь в качестве справочного материала.

Строго говоря, формула всего одна, но обычно для удобства пишут и частный случай с минусом в показателе. Параметр  не обязан быть одинокой буковкой, в качестве  может выступать сложное выражение, функция, важно лишь, чтобы они принимали только действительные значения. Собственно, мы это увидим прямо сейчас:

Пример 7

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана. Найти производную.

Решение: Генеральная линия партии остаётся непоколебимой – необходимо выделить действительную и мнимую часть функции. Приведу подробное решение, и ниже закомментирую каждый шаг:

Поскольку , то:

(1) Подставляем   вместо «зет».

(2) После подстановки нужно выделить действительную и мнимую часть сначала в показателе экспоненты. Для этого раскрываем скобки.

(3) Группируем мнимую часть показателя, вынося мнимую единицу за скобки.

(4) Используем школьное действие со степенями.

(5) Для множителя  используем формулу Эйлера , при этом .

(6) Раскрываем скобки, в результате:

 – действительная часть функции ;
 – мнимая часть функции .

Дальнейшие действия стандартны, проверим выполнение условий Коши-Римана:

Частные производные опять не очень сложные, но на всякий пожарный расписал их максимально подробно. Проверяем второе условие:

Условия Коши-Римана выполнены, найдём производную:

Ответ: , , условия Коши-Римана выполнены,

На вторую формулу Эйлера задание для самостоятельного решения:

Пример 8

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана, найти производную.

Полное решение и ответ в конце урока.
! Внимание! Знак «минус» в формуле Эйлера  относится к мнимой части, то есть . Терять минус нельзя!

Непосредственно из формул Эйлера можно вывести формулу разложения синуса и косинуса на действительную и мнимую часть. Сам вывод достаточно занудный, вот он, кстати, у меня в учебнике перед глазами (Бохан, Математический анализ, том 2). Поэтому сразу приведу готовый результат, который опять полезно переписать к себе в справочник:
Разложение синуса и косинуса на действительную и мнимую часть

Параметры «альфа» и «бета» принимают только действительные значения, в том числе они могут быть сложными выражениями, функциями действительной переменной.

Кроме того, в формуле нарисовались гиперболические функции, при дифференцировании они превращаются друг в друга, не случайно я включил их в таблицу производных.

Пример 9

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана. Производную, так и быть, находить не станем.

Решение: Алгоритм решения очень похож на предыдущие два примера, но есть очень важные моменты, поэтому начальный этап я опять закомментирую пошагово:

Поскольку , то:

1) Подставляем   вместо «зет».

(2) Сначала выделяем действительную и мнимую часть внутри синуса. В этих целях раскрываем скобки.

(3) Используем формулу , при этом .

(4) Используем чётность гиперболического косинуса:  и нечётность гиперболического синуса: . Гиперболики, хоть и не от мира сего, но во многом напоминают аналогичные тригонометрические функции.

В итоге:
 – действительная часть функции ;
 – мнимая часть функции .

Внимание! Знак «минус» относится к мнимой части, и его ни в коем случае не теряем! Для наглядной иллюстрации полученный выше результат можно переписать так:

Проверим выполнение условий Коши-Римана:
Как проверить условия Коши-Римана?

Условия Коши-Римана выполнены.

Ответ: , , условия Коши-Римана выполнены.

С косинусом, дамы и господа, разбираемся самостоятельно:

Пример 10

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана.

Я специально подобрал примеры посложнее, поскольку с чем-нибудь вроде  все справятся, как с очищенным арахисом. Заодно внимание потренируете! Орехокол в конце урока.

Ну и в заключение рассмотрю ещё один интересный пример, когда комплексный аргумент находится в знаменателе. Пару раз в практике встречалось, разберём что-нибудь простое. Эх, старею…

Пример 11

Определить действительную  и мнимую  часть функции . Проверить выполнение условий Коши-Римана.

Решение: Снова необходимо выделить действительную и мнимую часть функции.
Если , то

Возникает вопрос, что же делать, когда «зет» находится в знаменателе?

Всё бесхитростно – поможет стандартный приём умножения числителя и знаменателя на сопряженное выражение, он уже применялся в примерах урока Комплексные числа для чайников. Вспоминаем школьную формулу . В знаменателе у нас уже есть , значит, сопряженным выражением будет . Таким образом, нужно умножить числитель и знаменатель на :

Вот и всё, а вы боялись:
 – действительная часть функции ;
 – мнимая часть функции .

Повторюсь в третий раз – не теряем минус у мнимой части!!!

Проверим выполнения условий Коши-Римана. Надо сказать, частные производные здесь не то чтобы о-го-го, но уже не из простейших:

Условия Коши-Римана выполнены.

Ответ: , , условия Коши-Римана выполнены.

В качестве эпилога короткая история про ступор, или о том, какие вопросы преподавателей являются самыми сложными. Самые сложные вопросы, как ни странно – это вопросы с очевидными ответами. А история такова: сдаёт человек экзамен по алгебре, тема билета: «Следствие основной теоремы алгебры». Экзаменатор слушает-слушает, а потом вдруг спрашивает: «А откуда это следует?». Вот это был ступор, так ступор. Вся аудитория уже угорала, но студент так и не сказал правильного ответа: «из основной теоремы алгебры».

Вспоминаю историю и из личного опыта, сдаю физику, что-то там про давление жидкости, что уже не помню, но рисунок остался в памяти навсегда – изогнутая труба, по которой текла жидкость. Ответил я билет «на отлично», причем даже сам понял, что ответил. И вот преподаватель напоследок спрашивает: «Где здесь трубка тока?». Крутил-вертел я этот чертёж с изогнутой трубой минут пять, высказывал самые дикие версии, пилил трубу, рисовал какие-то проекции. А ответ был прост, трубка тока – это вся труба.

Неплохо разгрузились, до встречи на уроке Как найти функцию комплексной переменной? Там разобрана обратная задача.

Иногда очевидное – это самое сложное, всем желаю не тормозить!

Решения и ответы:

Пример 2: Решение: так как , то:

Ответ:  – действительная часть,  – мнимая часть.

Пример 4: Решение: Так как , то:
 
Таким образом:
 – действительная часть функции ;
 – мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условие  выполнено.

Условие  также выполнено.
Условия Коши-Римана выполнены, найдём производную:

Ответ:  – действительная часть,  – мнимая часть.
Условия Коши-Римана выполнены, .

Пример 6: Решение: определим действительную и мнимую часть данной функции.
Так как , то:

Таким образом:
 – действительная часть функции ;
– мнимая часть функции .
Проверим выполнение условий Коши-Римана:


Условия Коши-Римана выполнены.


Ответ: , , условия Коши-Римана выполнены,

Пример 8: Решение: Так как , то:

Таким образом:
 – действительная часть функции ;
 – мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условия Коши-Римана выполнены, найдём производную:

Ответ: , , условия Коши-Римана выполнены,

Пример 10: Решение: Так как , то:

Таким образом:
 – действительная часть функции ;
 – мнимая часть функции .
Проверим выполнение условий Коши-Римана:

Условия Коши-Римана выполнены.
Ответ: , , условия Коши-Римана выполнены.

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?




© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено