Математика для заочников и не только

Высшая математика – просто и доступно!

Вы находитесь на зеркале сайта mathprofi.ru

Форум, библиотека и блог: mathprofi


Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Производная комплексной
функции. Примеры решений

Как найти функцию
комплексной переменной?

Конформное отображение
Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi.com

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом



  Карта сайта


Как найти уравнение нормали к графику функции в заданной точке?


На данном уроке мы узнаем, как найти уравнение нормали к графику функции  в точке  и разберём многочисленные примеры, которые касаются этой задачи. Для качественного усвоения  материала нужно понимать геометрический смысл производной и уметь их находить хотя бы на уровне следующих статей:

Как найти производную?
Производная сложной функции
и
Простейшие задачи с производными.

Перечисленные уроки позволят «чайникам» быстро сориентироваться в теме и поднять свои навыки дифференцирования практически с полного нуля. По существу, сейчас последует развёрнутое продолжение параграфа об уравнении касательной 3-й статьи из вышеприведенного списка. Почему продолжение? Уравнение нормали тесно связано с уравнением касательной. Помимо прочего я рассмотрю задачи о том, как построить уравнения этих линий в ситуациях, когда функция задана неявно либо параметрически.

Но сначала освежим воспоминания: если функция  дифференцируема в точке  (т.е. если существует конечная производная ), то уравнение касательной к графику функции в точке  можно найти по следующей формуле:

Это самый распространенный случай, с которым мы уже столкнулись на уроке Простейшие задачи с производными. Однако дело этим не ограничивается: если в точке  существует бесконечная производная: , то касательная будет параллельна оси  и её уравнение примет вид . Дежурный пример: функция  с производной , которая обращается в бесконечность вблизи критической точки . Соответствующая касательная выразится уравнением:
 (ось ординат).

Если же производной  не существует (например, производной от  в точке ), то, разумеется, не существует и общей касательной.

Как различать последние два случая, я расскажу чуть позже, а пока что вернёмся в основное русло сегодняшнего урока:

Что такое нормаль? Нормалью к графику функции  в точке  называется прямая, проходящая через данную точку перпендикулярно касательной к графику функции в этой точке (понятно, что касательная должна существовать). Если совсем коротко, нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания.

Как найти уравнение нормали? Из курса аналитической геометрии напрашивается очень простой алгоритм: находим уравнение касательной и представляем его в общем виде . Далее «снимаем» нормальный вектор  и составляем уравнение нормали по точке  и направляющему вектору .

Этот способ применять можно, но в математическом анализе принято пользоваться готовой формулой, основанной на взаимосвязи угловых коэффициентов перпендикулярных прямых. Если существует конечная и отличная от нуля производная , то уравнение нормали к графику функции  в точке  выражается следующим уравнением:

Особые случаи, когда  равна нулю либо бесконечности мы обязательно рассмотрим, но сначала «обычные» примеры:

Пример 1

Составить уравнения касательной и нормали к графику кривой  в точке, абсцисса которой равна .

В практических заданиях часто требуется найти и касательную тоже. Впрочем, это очень только нА руку – лучше будет «набита рука» =)

Решение: Первая часть задания хорошо знакома, уравнение касательной составим по формуле:

В данном случае:

Найдём производную:

Здесь на первом шаге вынесли константу за знак производной, на втором – использовали правило дифференцирования сложной функции.

Теперь вычислим производную в точке :

Получено конечное число и это радует. Подставим  и  в формулу :

Перебросим  наверх левой части, раскроем скобки и представим уравнение касательной в общем виде:


Вторая часть задания ничуть не сложнее. Уравнение нормали составим по формуле:

Избавляемся от трёхэтажности дроби и доводим уравнение до ума:

 – искомое уравнение.

Ответ:

Здесь можно выполнить частичную проверку. Во-первых, координаты точки  должны удовлетворять каждому уравнению:


 – верное равенство.


 – верное равенство.

И, во-вторых, векторы нормали  должны быть ортогональны. Это элементарно проверяется с помощью скалярного произведения:
, что и требовалось проверить.

Как вариант, вместо нормальных векторов можно использовать направляющие векторы прямых.

! Данная проверка оказывается бесполезной, если неверно найдена производная  и/или производная в точке . Это «слабое звено» задания – будьте предельно внимательны!

Чертежа по условию не требовалось, но полноты картины ради:
Касательная и нормаль к графику функции в заданной точке
Забавно, но фактически получилась и полная проверка, поскольку чертёж выполнен достаточно точно =) Кстати, функция  задаёт верхнюю дугу эллипса.

Следующая задача для самостоятельного решения:

Пример 2

Составить уравнения касательной и нормали к графику функции  в точке .

Примерный образец чистового оформления задания в конце урока.

Теперь разберём два особых случая:

1) Если производная в точке  равна нулю: , то уравнение касательной упростится:

То есть, касательная будет параллельна оси .

Соответственно, нормаль будет проходить через точку  параллельно оси , а значит её уравнение примет вид .

2) Если производная в точке  существует, но бесконечна: , то, как отмечалось в самом начале статьи, касательная станет вертикальной: . И поскольку нормаль проходит через точку  параллельно оси , то её уравнение выразится «зеркальным» образом:

Всё просто:

Пример 3

Составить уравнения касательной и нормали к параболе  в точке . Сделать чертёж.

Требование выполнить чертёж я не добавлял – так было сформулировано задание в оригинале. Хотя это редкость.

Решение: составим уравнение касательной .
В данном случае  

Казалось бы, расчёты пустяковые, а в знаках запутаться более чем реально:

Таким образом:

Поскольку касательная параллельна оси  (Случай № 1), то нормаль, проходящая через ту же точку , будет параллельна оси ординат:

Чертёж – это, конечно же, дополнительные хлопоты, но зато добротная проверка аналитического решения:
Горизонтальная касательная и вертикальная нормаль

Ответ: ,

В школьном курсе математики распространено упрощённое определение касательной, которое формулируется примерно так: «Касательная к графику функции – это прямая, имеющая с данным графиком единственную общую точку». Как видите, в общем случае это утверждение некорректно. Согласно геометрическому смыслу производной, касательной является именно зелёная, а не синяя прямая.

Следующий пример посвящён тому же Случаю № 1, когда :

Пример 4

Написать уравнение касательной и нормали к кривой  в точке .

Краткое решение и ответ в конце урока

Случай № 2, в котором  на практике встречается редко, поэтому начинающие могут особо не волноваться и с лёгким сердцем пропустить пятый пример. Информация, выделенная курсивом, предназначена для читателей с высоким уровнем подготовки, которые хорошо разобрались с определениями производной и касательной, а также имеют опыт нахождения производной по определению:

Пример 5

Найти уравнения касательной и нормали к графику функции  в точке

Решение: в критической точке знаменатель производной  обращается в ноль, и поэтому здесь нужно вычислить односторонние производные  с помощью определения производной (см. конец статьи Производная по определению):

Обе производные бесконечны, следовательно, в точке  существует общая вертикальная касательная:

Ну, и очевидно, что нормалью является ось абсцисс. Формально по формуле:

Для лучшего понимания задачи приведу чертёж:
Вертикальная касательная и горизонтальная нормаль
Ответ:

Я рад, что вы не ушли бороздить просторы Интернета, потому что всё самое интересное только начинается! Чтобы осилить материал следующего параграфа, нужно уметь находить производную от неявно заданной функции:


Как найти уравнение касательной и уравнение нормали,
если функция задана неявно?

Формулы касательной и нормали остаются прежними, но меняется техника решения:

Пример 6

Найти уравнения касательной и нормали к кривой  в точке .

Решение: судя по уравнению, это какая-то линия 3-го порядка, какая именно – нас сейчас совершенно не интересует.

В уравнении присутствует зловред , и поэтому перспектива выразить функцию в явном виде  выглядит весьма туманной.

Но этого и не требуется! Есть куда более остроумное решение. Уравнение касательной составим по той же формуле .

Из условия известны значения , кстати, не помешает убедиться, что они действительно удовлетворяют предложенному уравнению:

Получено верное равенство, значит, с точкой  всё в порядке.

Осталось вычислить . Сначала по стандартной схеме найдём производную от функции, заданной неявно:

Перепишем результат с более подходящим для нашей задачи обозначением:

На 2-м шаге в найденное выражение производной подставим :

Вот так-то!

Осталось аккуратно разобраться с уравнением:

Составим уравнение нормали:

Ответ:

Готово! А поначалу представлялось всё непросто. Хотя производная здесь, конечно,  – место уязвимое. Миниатюра для самостоятельного решения:

Пример 7

Найти уравнение нормали к линии  в точке

Хватит уже вымучивать касательную =)

В данном случае легко выяснить, что это окружность  центром в точке  радиуса  и даже выразить нужную функцию . Но зачем?! Ведь найти производную от неявно заданной функции на порядок легче! Она тут чуть ли не самая примитивная.

Краткое решение и ответ в конце урока.


Как найти уравнение касательной и уравнение нормали,
если функция задана параметрически?

Ещё проще. Но для этого нужно потренироваться в нахождении производной от параметрически заданной функции. А так – почти халява:

Пример 8

Составить уравнения касательной и нормали к циклоиде , проведенные в точке, для которой .

Чертёж циклоиды можно найти на странице S и V, если линия задана параметрически (так получилось, что эта статья была создана раньше). Там даже изображена точка касания.

Решение: абсцисса и ордината точки касания рассчитываются непосредственно из параметрических уравнений кривой:

Найдём первую производную от параметрически заданной функции:

И вычислим её значение при  :

Уравнение касательной составим по обычной формуле с поправкой на несколько другие обозначения:

Уравнение нормали:

Ответ:

В заключение предлагаю познакомиться с ещё одной интересной линией:

Пример 9

Составить уравнение нормали к полукубической параболе , проведенной в точке, для которой .

Это пример для самостоятельного решения. Напоминаю, что графики параметрически заданных функций можно построить, например, с помощью моего расчётного геометрического макета.

Ну а наш урок подошёл к концу, и я надеюсь, что изложенный материал прошёл для вас не по касательной, а нормально =)

Спасибо за внимание и успехов!

Решения и ответы:

Пример 2: Решение: уравнение касательной составим по формуле:

В данном случае:

Таким образом:

Уравнение нормали составим по формуле :

Ответ:

Пример 4: Решение: уравнение касательной составим по формуле:

В данной задаче:

Таким образом:

В точке  касательная параллельна оси , поэтому соответствующее уравнение нормали:

Ответ:

Пример 7: Решение: в данной задаче: .
Найдём производную:

Или:

Подставим в выражение производной :

Искомое уравнение нормали:

Ответ:

Пример 9: Решение: в данном случае:

Найдём производную и вычислим её значение при :

Уравнение нормали:

Ответ:

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5




© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено